VISHAL SAHU

Mobile: +1 631 542 3903 http://www.fsl.cs.sunysb.edu/~vishal/
Email: vishalsahunitt@gmail.com
https://github.com/vishsahu

SUMMARY

• I am member of File systems & Storage Lab (FSL), working under guidance of Prof. Erez Zadok. My primary areas of interest are Operating systems, Virtualization, Storage, Security and Networking.

EDUCATION

 Master of Science in Computer Science Stony Brook University, NY

 Bachelor of Technology in Electrical Engineering National Institute of Technology, Tiruchirappalli, India Aug 2015 - Dec 2016 (expected)

GPA: 3.50/4.0

Jul 2007 - May 2011

CGPA: 8.76/10.0, First Class with Distinction

RELEVANT COURSES

Operating Systems, Analysis of Algorithms, Computer Networks, Computer Architecture, Asynchronous Systems.

TEHCNICAL SKILLS

- Languages: C++, C, Python, Bash, Assembly
- Operating System: Linux (kernel & user space programming), Windows
- Tools & platforms: gdb, valgrind, git, QEMU, MATLAB
- Technologies/protocols: Virtualization, Cloud Storage, TCP/IP, 9P

PROFESSIONAL EXPERIENCE

MTS Intern VMware - Palo Alto, CA

Jun 2016 - Aug 2016

VDFS development group, Storage and Availability BU

- Optimized extent insertion into in-memory B-tree to reduce meta-data foot-print of Virtual Distributed File System (VDFS).
- Implemented read interface of VDFS to connect to remote AWS S3 storage backend using AWS C++ SDKs.
- Implemented proc-like **posix interface** to list all the backend storage objects in organized directory structure for easy access, eliminating the need of additional protocol.
- Added feature of formatting a VSAN volume using user defined storage policy.

Lead Engineer Samsung R&D Institute - Bangalore, India

Jun 2013 - Jul 2015

Multimedia IP design, System Software group

- Developed scalar for Pinch-to-Zoom feature capable of scaling images in range of 0.25x 4x in C++ on Android.
- Implemented SPIHT, wavelet coefficients based image compression algorithm in C++.
- Optimized run time of multimedia module by 60% using openGL vectorization on Qualcomm Adreno GPU.

ACADEMIC PROJECTS Aug 2015 - May 2016

• Asynchronous utility module for Linux [link]

- Implemented asynchronous job queuing mechanism to solve producer-consumer problem in Linux Kernel.
- Implemented appropriate locking mechanisms to avoid races and dead-locks because of concurrency.
- Defined fair scheduling policy to prevent starvation of low priority jobs.

• Anti-malware stackable file system (amfs) [link]

- Implemented stackable file system to detect malware patterns in files and guarantine them efficiently.
- Developed mechanism to update pattern database with minimal re-scanning overhead by implementing update-onwrite version keeping mechanism.
- User can define forbidden words database during mount time and can update it later using ioctl.

Design of JOS operating System [link]

- Designed and implemented 64-bit JOS operating system from scratch. Wrote boot loader, memory management, process management and file system in C.
- Implemented fork using copy-on-write mechanism to reduce number of pages allocated per process.

Implementation of 32-bit SPARC processor [link]

- Designed 32-bit SPARC in-order Scalar processor with 5-Stage pipeline.
- Implemented write-allocate write-back Direct-mapped instruction and data caches.
- Implemented data forwarding from memory and write-back stages to resolve RAW dependencies to improve throughput of pipeline.

• Performance study of Autoscaler [link]

- Done benchmarking of autoscaling of web servers by creating client server test architecture on Google Cloud.
- Implemented packet sniffing logic in C++ to measure request rate, response time and queue length metrics.
- Ran regressions for various web server workloads including traces from Google and Amazon.